
Object Relational Mapping
Introduction

Arvo Lipitsäinen
HAAGA-HELIA University of Applied Sciences

DBTech EXT project

University of Malaga , 6.4.2010

Layered software architecture

Source: Bauer, C. & King, G. 2007. Java Persistence with Hibernate.

Manning Publication Co.

Object oriented paradigm

• OO paradigm in the development of
information system:

– Object oriented analysis

– Object oriented programming

• OOP languages: C++, Java, …

– Object oriented design

Object oriented persistence

• State of object can be stored to disk and the same
object can be later re-created

• The class must implement Serializable

public class Customer implements Serializable

{

….

}

Customer customer = new Customer(…);

objectOutputStream.write(customer);

…..

objectInputStream.read(customer);

Object oriented persistence

• Many objects interconnected with each other
can be stored disk and later re-created

Order

LineItem

Product

Product
LineItem

Customer

objectOutputStream.write(order);

…

objectInputStream.read(order);

Object oriented persistence

• Navigating from object to another is easy

Order

LineItem

Product

Product
LineItem

Customer

objectOutputStream.write(order);

…

objectInputStream.read(order);

String productName =

order.getLineItem().getProduct().getName();

Polymorphics

• OO paradigm supports inheritance and
polymorphics through inheritance:

Person

Employee Customer

Person personx = Employee e;

Person persony = Customer c;

personx.getName();

persony.gerName();

Relational databases

• Predominant technology for management of
organization-wide persistent data

• Relational model: all data is represented as
mathematical n-ary relations

• Programming interface of the RDBM systems
is SQL (Sequential Query Language):

– Relational database table

– Row, column

– CRUD: create, read, update, delete

Object model / Relational model

• The persistent data is stored in the relational
databases

• Applications are developed and run in the
object oriented environment (Java)

• Object model and relational model are
different

• JDBC (Java Database Connectivity) is SQL
based interface to the RDBM systems

ORM mismatches

• Problem of granularity

• Problem of subtypes

• Problem of identity

• Problems relating to associations

• Problem of data navigation

• => Object Relational mapping is needed

Source: Bauer, C. & King, G. 2007. Java Persistence with Hibernate.

Manning Publication Co.

Solutions of ORM mismatch problems

• Trials of Object Databases, but …

• EJB 2 tried solution, but failed

• ORM tools: Hibernate, Toplink

• JPA (Java Persistence API) – Specification

– JPA 2.0, released in November 2009

• EJB 3 – Specification

• JBoss application server (open source)

– EJB 3

– based on Hibernate

JPA – Java Persistence API

• Persistent domain objects - entities - are
POJOs (Pure Old Java Objects) with @Entity
annotation

• Typically an entity class represent a table in a
relational database

• Entity instance corresponds to a row in that
table.

• Every entity must have a primary key

• The @Id annotation is used to denote a
simple primary key

Entity - annotations
@Entity

@Table(name = ”CUSTOMER_DBTECH”)

public class Customer

{

@Id

private int id;

private String name;

. . .

public int getId(){

return id;

}

public void setId(int id){

this.id = id;

}

public String getName(){

return name

}

.. .

}

Entity - annotations
@Entity

@Table(name = ”CUSTOMER_DBTECH”)

public class Customer

{

private int id;

private String name;

. . .

@Id

@Column(name = ”ID_DBTECH”)

public int getId(){

return id;

}

@Column(name = ”NAME_DBTECH”)

public String getName(){

return name

}

.. .

}

Embedded classes

• An entity can use other fine-grained classes,
embedded classes, to present entity state

• Embedded objects belong strictly to their
owning entity

Embedded classes
@Entity

public class Shipment

{

private int id;

private String date;

@Embedded

private Address deliveryaddress;

.

.

}

@Embeddable

public class Address

{

private String street;

private String city;

private String zip;

private String country;

. . .

}

Entity - relationships

• Entities can have relationships to other entities

Entity - relationships

• OneToOne / OneToMany / ManyToOne /
ManyToMany

• Uni-directional / bi-directional relationship

• Relationship must have an owning side

– Unidirectional relationship has only an owning
side

– Bidirectional relationship has both an owning side
and an inverse (non-owning) side

Entity – relationship fields
@Entity

public class Order {

…

private Customer customer;

private Shipment shipment;

private Collection<LineItem> lineItems;

…

@OneToOne

public Customer getCustomer() {

return customer;

}

@OneToOne

public Shipment getShipment() {

return shipment;

}

@OneToMany(mappedBy="order")

public Collection<LineItem> getLineItems() {

return lineItems;

} …

}

Entity – relationship fields
@Entity

public class Customer {

@Id

private int id;

private String name;

private String address;

// no relationship field

}

@Entity

public class Shipment {

@Id

private int id;

private Order order;

…

@OneToOne(mappedBy="shipment")

public Order getOrder() {

return order;

}

… }

Entity – relationship fields

@Entity

public class LineItem {

private int id;

…

private Order order;

private Product product;

..

@ManyToOne

public Order getOrder() {

return order;

}

@OneToOne

public Product getProduct() {

return product;

}

…

}

Mapping of relationship field

• Relationship field is mapped to the owning
side’s table as a foreign key

Mapping of relationship field

Mapping of many-to-many
relationship

Mapping of many-to-many
relationship

@Entity

public class Course {

@Id

private String code;

…

private Collection<Student> students;

..

@ManyToMany(mappedBy="courses")

public Collection<Student> getStudents() {

return students;

}

…

}

Mapping of many-to-many
relationship

@Entity

public class Student {

@Id

private String id;

…

private Collection<Course> courses;

…

@ManyToMany

public Collection<Course> getCourses() {

return courses;

}

…

}

Mapping of many-to-many
relationship

• Course and Student are mapped ..

• The relationship is mapped to a join table
STUDENT_COURSE (owner name first)

Persistence context

• A persistence context is a set of entity
instances with unique entity identity.

• An EntityManager instance is associated
with a persistence context.

Entity Manager

• EntityManager manages the entity instancies
and their life cycle within the persistent
context

• The scope of the persistence context can
either be the transaction (default), or can
extend beyond lifetime of a single
transaction.

Entity Manager

public interface EntityManager

{

void close();

Query createNamedQuery(String name);

Query createNativeQuery(String sqlString);

Query createQuery(String qlString);

<T> T find(Class<T> entityClass, Object primaryKey);

void flush();

<T> T merge(T entity);

void persist(Object entity);

void refresh(Object entity);

void remove(Object entity);

}

States of an entity instance

Java Persistence query language

• for defining queries over entities and their
persistent state

• truly platform independent:

– entities and their fields are referenced by their
names

– no reference to the table or column names of the
underlying relational database

Query language syntax

SELECT clause1

FROM clause2

[WHERE clause3]

[GROUP BY clause4]

[HAVING clause5]

[ORDER BY clause6]

Abstract persistence schema

• The query language uses the abstract
persistence schema of entities and
relationships for its data model

Order

LineItem

Product

Customer

Shipment

1

1

1

n

1

1

SELECT statements

The result of the query is all products

SELECT p

FROM Product p

SELECT p

FROM Product p

WHERE p.productGroup = ‘Wines’

The result of this query is a list of products, whose
product group is Wines

SELECT statements

The result of the query is a list of products, whose price
is equal or more than 0.0 and less than 500.00.

SELECT p

FROM Product p

WHERE p.price >= 0.0 AND p.price < 500.00

SELECT statement – input parameters

• The query can have input parameters

• A named parameter is denoted by an identifier that
is prefixed by the ":" symbol

SELECT p

FROM Product p

WHERE p.productGroup = :pgroup

• The value of the input parameter is given by calling
setParameter() method of Query object

SELECT statement – input parameters

• Another type of input parameter, a positional
parameter, is designated by the question mark (?)
prefix followed by an integer

SELECT p

FROM Product p

WHERE p.price >= ?1 AND p.price < ?2

Navigating in the query

• Two entities can be joined with JOIN
keyword for navigating from an entity to
another via a one-to-one relationship field.

SELECT o

FROM Order o JOIN o.customer c

WHERE c.name = ‘HAAGA-HELIA’

Navigating in the query

• In one-to-many relationship, the multiple side
consists of a collection of entities.

• A collection member declaration is declared
by using IN operator.

SELECT o

FROM Order o, IN (o.lineItems) l JOIN l.product p

WHERE p.code = ‘W0995’

Navigating in the query

• The SELECT query can return also persistent
fields of the entity.

SELECT p.name

FROM Order o, IN (o.lineItems) l JOIN

l.product p JOIN o.customer c

WHERE c.name = ‘Pedro Cavador’

Mapping of class hierarchies

• How to map a class hierarchy to the relational
database?

Mapping of class hierarchies

• There are three basic strategies for mapping a
class or class hierarchy to a relational
database:

– a single table per class hierarchy (default strategy)

– a joined subclass strategy, in

• fields that are specific to a subclass are mapped to a
separate table than the fields that are common to the
parent class

– a table per concrete entity class

Single table per class hierarchy

• All the classes in a hierarchy are mapped to a
single table.

• “discriminator column”, DTYPE, identifies the
specific subclass

Mapping of class hierarchies

• See the laboratory worksop afternoon

ORM – Object Relational Mapping

THANK YOU!

