Object Relational Mapping
Introduction

Layered software architecture

Presentation Layer
¥

Business Layer

v

Persistence Layer

Y

E Database j

Source: Bauer, C. & King, G. 2007. Java Persistence with Hibernate.
Manning Publication Co.

Object oriented paradigm

* OO0 paradigm in the development of
information system:
— Object oriented analysis

— Object oriented programming
* OOP languages: C++, Java, ...

— Object oriented design

Object oriented persistence

e State of object can be stored to disk and the same
object can be later re-created

* The class must implement Serializable

public class Customer implements Serializable

{

}

Customer customer = new Customer(..);
objectOutputStream.write (customer) ;

objectInputStream.read (customer) ;

Object oriented persistence

 Many objects interconnected with each other
can be stored disk and later re-created

objectOutputStream.write (order) ;

objectInputStream.read (order) ;

Object oriented persistence

* Navigating from object to another is easy

objectOutputStream.write (order) ;

objectInputStream.read (order) ;
String productName =
order.getLineltem() .getProduct () .getName () ;

Polymorphics

* OO0 paradigm supports inheritance and
polymorphics through inheritance:

Person

7

Employee Customer

Person personx = Employee e;
Person persony = Customer c;
personx.getName () ;
persony.gerName () ;

Relational databases

* Predominant technology for management of
organization-wide persistent data

* Relational model: all data is represented as
mathematical n-ary relations

* Programming interface of the RDBM systems
is SQL (Sequential Query Language):
— Relational database table
— Row, column
— CRUD: create, read, update, delete

Object model / Relational model

* The persistent data is stored in the relational
databases

* Applications are developed and run in the
object oriented environment (Java)

* Object model and relational model are
different

* JDBC (Java Database Connectivity) is SQL
based interface to the RDBM systems

ORM mismatches

* Problem of granularity

* Problem of subtypes

* Problem of identity

* Problems relating to associations
* Problem of data navigation

e => Object Relational mapping is needed

Source: Bauer, C. & King, G. 2007. Java Persistence with Hibernate.
Manning Publication Co.

Solutions of ORM mismatch problems

* Trials of Object Databases, but ...
 EJB 2 tried solution, but failed
* ORM tools: Hibernate, Toplink

* JPA (Java Persistence API) — Specification
— JPA 2.0, released in November 2009

e EJB 3 — Specification
* JBoss application server (open source)

—EJB3
— based on Hibernate

JPA — Java Persistence API

e Persistent domain objects - entities - are
POJOs (Pure Old Java Objects) with @Entity
annotation

e Typically an entity class represent a table in a
relational database

* Entity instance corresponds to a row in that
table.

* Every entity must have a primary key

e The @Id annotation is used to denote a
simple primary key

Entity - annotations

QEntity
@Table (name = ”“CUSTOMER DBTECH")

public class Customer

{
@Id
private int id;
private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName () {
return name

}

Entity - annotations

QEntity
@Table (name = ”“CUSTOMER DBTECH")
public class Customer

{

private int id;

private String name;

@Id

@Column (name = ”“ID DBTECH”")

public int getId() {
return id;

}

@Column (name = ”“NAME DBTECH”)
public String getName () {
return name

}

Embedded classes

* An entity can use other fine-grained classes,
embedded classes, to present entity state

* Embedded objects belong strictly to their
owning entity

<<Entity== <<Class=>=
Shipment Address
- id — -] -stes
- res ipient embedded - Zip
- gdelveryAddress - city
- courntry

Embedded classes

@Entity
public class Shipment
{
private int 1id;
private String date;
@Embedded
private Address deliliveryaddress;

}

@Embeddable

public class Address

{
private String street;
private String city;
private String zip;
private String country;

Entity - relationships

* Entities can have relationships to other entities

1 << Entity==
=<F ntity== [——m Customer
Order
1 ?\
q | <=Entity==
n shipment
<<f ntity=>
Linettem
1
<<Entity=>
P roduct

Entity - relationships

* OneToOne / OneToMany / ManyToOne /
ManyToMany

* Uni-directional / bi-directional relationship
* Relationship must have an owning side

— Unidirectional relationship has only an owning
side

— Bidirectional relationship has both an owning side
and an inverse (non-owning) side

Entity — relationship fields

QEntity
public class Order ({

private Customer customer;
private Shipment shipment;
private Collection<LineItem> lineItems;

@OneToOne

public Customer getCustomer () ({
return customer;

}

@OneToOne

public Shipment getShipment () ({
return shipment;

}

@OneToMany (mappedBy="order")

public Collection<LinelItem> getLineItems ()
return lineltems;

}

Entity — relationship fields

QEntity
public class Customer ({

QREn
pub

}

eId

private int id;

private String name;
private String address;
// no relationship field

tity

lic class Shipment ({
@Id

private int id;
private Order order;

@OneToOne (mappedBy="shipment")
public Order getOrder () {
return order;

}

Entity — relationship fields

@Entity
public class LineItem {
private int id;

private Order order;
private Product product;

@ManyToOne
public Order getOrder () {
return order;

}
QOneToOne

public Product getProduct() ({
return product;

}

Mapping of relationship field

* Relationship field is mapped to the owning
side’s table as a foreign key

ORDER table l I[IU STOMER table

ID = | AMOUNTS | ORDERDATE = | CUsTomerR D =] | ID & | ADORESS & | NavE =]
i 0| 16.2.2010 10:45:3... 1001 1001 |[F amblas &, Barcslona Coampanyy’ X
2 0]16.2.2010 10:45:3... 1002 1002 Corsn 6, Roma \Company ¥

3| 016.2.2010 10:45:3...] 1001 1003 Brasdway 116, New York Company Z

Mapping of relationship field

ORDER table

l EHIPMENT table

ID_2 | AMOUNT £ | DRDERDATE || CUSTOMER_ID$ | SHIPMENT_ID# | D = |DATE = | DESTINATION =
: Elizggg:g:g: - ! 1/16.2.2010 16:18... Ramblas 5, Barcelona |
3 0/16.2.2010 16:1... 1001 5 E| 16.2.2010 16:18... Ramblas 5, Barcelona
OEDEE table LDF.EI'I'E}I table
ID 2 | AMOUNT2 | ORDERDATE]| CUSTOMER DS $ | aMounTs | PRICE $ | PRODUCT
1 151] 7.4.2010 17:52:170... 1001 ;l ;;;L““Jf:‘;::ﬁfm ;;
I 2 115,8] 7.4.2010 17:52:17 1., 1002 3 ﬂ'ﬁiﬁfﬂqﬁmm; S

Mapping of many-to-many

relationship
Course Student
code n N1 id
name o= = name
points COurses
students

Mapping of many-to-many
relationship

QEntity
public class Course {

@Id
private String code;

private Collection<Student> students;

@ManyToMany (mappedBy="courses")
public Collection<Student> getStudents() ({
return students;

}

Mapping of many-to-many
relationship

QEntity

public class Student ({
@Id
private String id;

private Collection<Course> courses;

@ManyToMany
public Collection<Course> getCourses () {
return courses;

}

Mapping of many-to-many
relationship

* Course and Student are mapped ..

* The relationship is mapped to a join table
STUDENT COURSE (owner name first)

¥

COURSEtable STUDENT table ISTLIDENT_CDLIHSE’[ElbIE
CODEZ | NAME a |POINTS]| |p &|hwE 2| |STUDENTSID & [COURSESCODE 2
D019 |Data Mining 6 (08100 Jose Manuel Barraso 08103 P103
B251 Business Hanagement' 5 03101 Eva Paradse 09102 _|:r1|:|3
P103 |[Foreign Affairs of EU | 2| |80z [angela perke | o100 P103
5103 Catherine Ashton 08102 D019
09100 Herman Van Rompuy 09102 D019
09101 T Berner 09100 D019
9102 Sivio Berhusconi 09101 B51

Persistence context

* A persistence context is a set of entity
instances with unique entity identity.

* An EntityManager instance is associated
with a persistence context.

EntityManager
Entity instances with el
unique identity

Persistence context J

Entity Manager

* EntityManager manages the entity instancies
and their life cycle within the persistent
context

* The scope of the persistence context can
either be the transaction (default), or can
extend beyond lifetime of a single
transaction.

Entity Manager

public interface EntityManager
{
void close () ;
Query createNamedQuery (String name) ;
Query createNativeQuery (String sglString);
Query createQuery (String glString);
<T> T find(Class<T> entityClass, Object primaryKey);
void flush{();
<T> T merge (T entity);
void persist (Object entity);
void refresh (Object entity);
void remove (Object entity);

States of an entity instance

fff!;;,,ffff'""'"" garbage

¢ per=sist()
Eind{\
Query: remove ()
getResultlList () ——p- @
Query: persist() ~—
getSingleResult () garbage

Persistence
context
ends

merge ()

garbage

Java Persistence query language

* for defining queries over entities and their
persistent state

* truly platform independent:

— entities and their fields are referenced by their
names

— no reference to the table or column names of the
underlying relational database

Query language syntax

SELECT clausel
FROM clause?
[(WHERE clause3]
[GROUP BY claused]
[HAVING claused]
[ORDER BY clauseo6]

Abstract persistence schema

 The query language uses the abstract
persistence schema of entities and
relationships for its data model

D

1 1
n (stipment
1

SELECT statements

SELECT p
FROM Product p

The result of the query is all products

SELECT p
FROM Product p
WHERE p.productGroup = ‘Wines’

The result of this query is a list of products, whose
product group is Wines

SELECT statements

SELECT p
FROM Product p
WHERE p.price >= 0.0 AND p.price < 500.00

The result of the query is a list of products, whose price
is equal or more than 0.0 and less than 500.00.

SELECT statement — input parameters

* The query can have input parameters
A named parameter is denoted by an identifier that

is prefixed by the ":" symbol

SELECT p l
FROM Product p

WHERE p.productGroup = :pgroup

« The value of the input parameter is given by calling
setParameter () method of Query object

SELECT statement — input parameters

* Another type of input parameter, a positional
parameter, is designated by the question mark (?)
prefix followed by an integer

SELECT p l l
FROM Product p

WHERE p.price >= 2?1 AND p.price < ?2

Navigating in the query

* Two entities can be joined with JOIN

keyword for navigating from an entity to
another via a one-to-one relationship field.

SELECT o

FROM Order o JOIN o.customer c
WHERE c.name = ‘HAAGA-HELTIA'

Navigating in the query

In one-to-many relationship, the multiple side
consists of a collection of entities.

A collection member declaration is declared
by using IN operator.

SELECT o
FROM Order o, IN (o.llineltems) 1 JOIN 1.product p
WHERE p.code = ‘W0995'

Navigating in the query

e The SELECT query can return also persistent
fields of the entity.

SELECT p.name

FROM Order o, IN (o.linelItems) 1 JOIN
1l.product p JOIN o.customer c

WHERE c.name = ‘Pedro Cavador’

Mapping of class hierarchies

* How to map a class hierarchy to the relational
database?

<< Entity==
Person

N

<< Entity=>=> zzEntity=>=
E mployee Customer

Mapping of class hierarchies

* There are three basic strategies for mapping a
class or class hierarchy to a relational
database:

— a single table per class hierarchy (default strategy)

— ajoined subclass strategy, in

* fields that are specific to a subclass are mapped to a
separate table than the fields that are common to the
parent class

— a table per concrete entity class

Single table per class hierarchy

* All the classes in a hierarchy are mapped to a
single table.

* “discriminator column”, DTYPE, identifies the
specific subclass

SELECT * FROM PERSON

DTYPE CODE ADDRESS DEGREE GENDER NAME DEPARTMENT SALARY TITLE COMMENT PREFERENCE TYPE
Employee 1234 Bruessels Doctr M Herman Van Rompuy Administation | 24 322,55 President of EU | [fru] frl]
Person (2201 [watterland 777 M il Tel [rud] ' ([[T (] [l
Customer 9834 Munich Doctor M Hasso Platner [red] : [l [Very good person [Beer [Super

Mapping of class hierarchies

e See the laboratory worksop afternoon

ORM — Object Relational Mapping

THANK YOU!

