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1. Introduction 

With the arrival of cloud computing, many authors have sought to relax consistency requirements in 
order to maximise the availability and performance of database systems in the cloud (e.g. [1]). This 
paper represents a contribution in the other direction, maintaining full consistency, but requiring the 
availability of specific transaction server(s) before accepting a transaction commit.  

The difference here is between the availability of the cloud database service (Google Bigtable [2] for 
example) and the availability of the host(s) for a specific element of the Bigtable. With cloud 
computing, people are contemplating elastic services where owing to popularity and globalisation, the 
requirements of a particular data set need to be satisfied by very large numbers of servers. In the 
background is the famous CAP theorem [3], [4] that there is a conflict between consistency, 
availability and tolerance to network partitioning, and no system can achieve all three. The theorem 
was originally stated in the context of web services, but the C of CAP is also the C of ACID, and for 
databases strong consistency is achieved by requiring ACID transactions. Transaction management 
imposes “a total order on all operations such that each transaction looks as if it were completed in a 
single instant” [4]. Weaker forms of consistency are unacceptable from the viewpoint of this paper, but 
availability is further discussed in section 8 below. 

A number of recent database management systems such as ElasTras [5], VoltDB [6], and Xeround [7] 
have come up with elegant solutions for cloud computing that preserve the ACID properties of 
transactions, with the help of optimistic concurrency control, and database partitioning. Generally, 
though, their preoccupation with high throughput has led to restrictions in other directions. VoltDB, for 
example, only supports transactions at the level of stored procedures, which poses difficulties for a lot 
of standard OLTP applications, such as holiday booking or book purchasing, where the client wants to 
be sure a seat or book is available before authorising payment. 

The open-source Pyrrho DBMS [8], a relational database with fully ACID transactions and SQL2008 
[9] compliance, has been used as a vehicle for exploring multi-server databases for example in 
developing a semantic web capability, and for these reasons has always used optimistic concurrency 
control. In its first attempt at approaching cloud computing (v.4.2), it envisaged a single transaction 
master for each database, and focussed on making the transaction serialisation process as efficient 
as possible, by separating it on the one hand from query processing and on the other from storage 
and retrieval operations. In the most recent version it allows databases to be partitioned by the 
primary keys of tables on a shared-nothing basis, for example, by country. With care this can ensure 
that many transactions only require to be committed against one partition, achieving a reasonable 
degree of scalability. 

2. Master-slave database architectures 

A feature of Pyrrho is the availability of the complete history of the database. This works well for long-
term business records, but not very well for the sort of transient data that is created during trend 
analysis and planning. Of course, such tables can be dropped and thus disappear from normal view, 
and fresh tables can be created using the same names (names of database objects only need to be 
currently unique, not historically unique). Nevertheless, if the historical record of the database 
becomes a source of pride, there can be some irritation that users are polluting this history with their 
ad-hoc tables. 

Accordingly, Pyrrho has a facility to connect to several databases at once. New database objects 
such as tables created during such a session will be added to the first-named database, while objects 
in the other databases remain accessible subject to the permissions that have been granted to the 
user. Connections can be opened and closed for very little cost, since the database file is only fully 
processed the first time the server accesses it. 

For example, a connection list of form “Files=A,B,C,D”, would be appropriate for a connection for 
performing some sort of data analysis on database D, using tools stored in database C, where 
database B contains partially-completed analyses, and database A is being used for temporary 
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results that will be deleted at the end of a session. Database B can be archived and a fresh analysis 
database constructed for the next period of analysis, while the tools in C are kept under revision for 
future use, separate from the live database D.  

With this scenario, connections of form “Files=D” would be used for normal business operations on D, 
connections of form “Files=C,D” would be used for adding new tool objects such as stored procedures 
or views useful for data analysis, and connections of form “Files=B,C,D” would be used to create the 
analysis tables. B and C would probably not be usable on their own, but in Pyrrho it is perfectly 
acceptable for a stored procedure in C to reference an object in B. 

This approach works well to support the different files in a partitioned database, as we will see in the 
next section. A connection that only requires access to one of the partitions will typically connect to 
two database files: the desired partition, and the base database file that contains tables that were not 
partitioned, and the schema on which the partition is based.  

With the use of operating system integrated user identities, the user identity can be expected to be 
valid in all databases involved in the connection. Authorities are a different matter. Generally at most 
one of the databases will be modified in any transaction, and the authority string chosen for the 
connection should be the correct one for such a modification. It is not expected or required that 
authority identifiers in different databases should match in any way. 

There are some limitations on usage in such multi-database connections:  

 All data definition, drop, and access control statements affect only the local database. 

 Object integrity cannot create dependencies on other databases: generally, schemas 
must not contain references to other databases. This means, for example, that new 
referential constraints can only be specified where the referenced table is in the local 
database. On the other hand, subtypes (including URI-based subtypes) are constructed 
in the receiving database as needed when data from another database is inserted in the 
local database. 

Data manipulation can affect all databases in the connection. It is relatively unusual for a single 
transaction in a multi-database connection to result in changes in more than one database (for 
example in the above scenario with four databases, at most one would be modified in any 
transaction). The occurrence of a transaction that modifies more than one database makes a 
permanent link between the databases since for example the transaction cannot be verified unless all 
the participating databases are online. By default Pyrrho verifies such transactions for consistency 
each time any of the participating databases is loaded, so that all participating databases must be 
available to the server (they may of course be remote). A database can be made known to the server 
through use of configuration files, or using a connection string that refers to all of the databases. 

3. Partitioning a Database 

If a database becomes too large or too busy for the server(s) on which it is provided, an option is to 
partition it to create a “distributed database” (Ceri and Pelagatti, 1984). When the partitioning is done 
horizontally by selecting ranges of values of fields in the primary key (typically a multi-column primary 
key is used), the result is nowadays called “shared-nothing replication”. From October 2010, Pyrrho 
supports this architecture. Configuration files are used to specify the relationship between databases, 
partition files, and the partitioning mechanism. 

Since Pyrrho retains a historical record of the database, creation of a new partition is an event in this 
history. Each partition has its own database file. The complete database consists of a collection of 
database files, one of which (the “root”) has the same name as the database. All of the files agree on 
the initial part of the file, and effectively the collection of files form a branching tree-like structure. 
Each new partition starts out as a copy of a database file in the set, and a configuration file entry is 
added to specify its file name, the name of the (“base”) file it branches from, and the new partition key 
data for the table(s) it contains. Pyrrho servers only maintain indexes for the partition they have 
loaded, and so a cold start is required for the base file server(s). No data is shared between partitions 
(e.g. lookup tables will generally remain in the root file), apart from information contained in the logs.  

When supplying the connection string for a partitioned database, the client must specify all of the 
database file partitions it wishes to connect to. A client can obtain this set dynamically from the root 
database using system tables.   
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A connection that needs to refer only to the data in a single partition only need connect to that 
partition, but generally a multi-file connection will be required. For example, alteration to a table which 
references the base partition will require a connection that includes the base partition. Note that many 
cross-partition operations in the logs will be treated as cross-database transactions, and the server 
will try to verify coherence of the participating databases. 

Schema information should be in the root database, so tables should be initially created there. A new 
partition can be configured to contain existing data: this data will then no longer be available in the 
base database. It is possible to add a new empty partitioned table to an existing partitioned database. 
Any other change to partition information will probably be unusable. Pyrrho only modified database 
files by appending new transaction data to them. This applies even to transactions that delete records 
or drop tables. The location of unmodified data is never changed. Bringing a database copy up to date 
always amounts to adding some additional information at the end of the file. 

There is no supported way of recombining partitions. However, it is possible to recover data from 
partitions by considering how the server will treat the transaction logs. For example, if partition 
information is lost, the initial data from a partition will reappear in the base database next time the 
base database server is reloaded, and the file used for a partition will contain the base data 
information together with the data in its partition. Although the root part of the database must be 
available, it should not be modified, and thus should not become a bottleneck. 

4. System Table for Partition Information 

The Sys$Horizontal table has entries only for partitioned databases with a table where only a portion 
is maintained in the data file, and gives access to configuration information.  

Field DataType Description 

DataFile Char The database file containing the partition 

Table Int A specific table  

Column Int A specific column for value bounds  

Max Char Value bounds for the specified column (default unbounded) 

MaxInclude Boolean Value bounds for the specified column (default true) 

Min Char Value bounds for the specified column (default unbounded) 

MinInclude Boolean Value bounds for the specified column (default true) 

5. Example Partitioning Configuration 

Suppose that one of the tables on a database has so much traffic that it is worthwhile placing a part of 
it on a different server, and this part can be chosen to minimise the number of transactions that 
access both parts of the table. We can delegate single-partition transactions to the partition server, 
while cross partition transactions must be coordinated by the master server, which will be the base 
server by default. 

For definiteness, let us suppose the database name is “Sales”. The configuration file (on hosts H and 
J) might read (for simplicity we split just one table): 
<Config> 
  <Databases> 
    <Database File="Sales" > 
      <Server Host="H" /> 
    </Database> 
    <Database Base="Sales" File="Sales_1" DefPos="372"> 
      <Server Host="J" /> 
 <Table DefPos="66"> 
  <Rows> 
    <Column DefPos="158" Min="2" Max="2" /> 
  </Rows> 
 </Table> 
    </Database> 
  </Databases> 
</Config> 

Both hosts will hold the schema information from the common portion of the database (this common 
schema information cannot be changed). The full index of the specified table will not be on either 
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server, but all indexes of all other tables are on host H. A transaction limited to the Sales_1 partition 
should specify Files=Sales_1;Host=J in the connection string (thus directly connecting to J). A 
transaction needing other partitions should specify them: Files=Sales,Sales_1;Host=H in this case. 
(For best results the first file specified should be on the Host being connected to.) 

Tables and Columns are referred to by DefPos rather than by name, in case they have been renamed 
since their creation. 

The algorithm for horizontal partitioning assumes that a partition holds all rows whose keys match the 
value bounds specified, except for rows belonging to a child partition. 

After the first cross-partition transaction, the Sales and Sales_1 files cannot be used separately, as 
validation of any cross-partition transaction will check their information is consistent. The two files 
could be configured to run on the same host, but there is no easy way to put them back together. 

6. Using Multifile Connections 

The purpose of transaction profiling is to examine the relative frequency of different kinds of 
transactions, and especially to identify the causes of transaction conflicts. Good database and 
application design will seek to minimise transaction conflicts for normal operation of the business 
processes, but in general some transaction conflicts are inevitable. 

With Pyrrho, transaction profiling is something that is enabled for a period to examine the above 
issues. Transaction profiles are persisted not in the database itself, but in XML files: this is because it 
is a record not of the entire database activity, but just the periods for which profiling is enabled. 
Profiles can be deleted without harming the database in any way. 

There is a convenience utility called ProfileViewer which displays the profile in a readable tree-view 
format. The profile can either be “fetched” from the server (assuming profiling is enabled), or “loaded” 
from the XML file (in which case ProfileViewer expects to find the xml file in its working folder). 

 

When profiling is turned off or on for a database called name profiling information is destructively 
saved as or if available loaded from an XML document with name name.xml. Thus a database 
administrator can carefully take a database offline by throttling, and then turning off profiling to record 
a snapshot before shutting down a server, and in this way a full profile of normal operations can be 
maintained. This level of completeness for profile information will not be achieved if the database 
server is simply killed.  

If profiling is enabled, any failed transaction will report its profile. The system profile table will contain 
the number of successful and failed transactions recorded for this profile: the number of successful 
transactions will be based on the entire history of the database, while the number of failed 
transactions recorded will be based on the available information from recorded periods of full profiling 
(or since the time profiling was enabled for the server). 

If profiling is turned on, the tables described in this section enable inspection of the real-time state of 
the profile information, always excluding any information about transactions in progress. The profile 
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viewer described in section 4.6 obtains profile information from these tables or from the XML 
document, and also groups profiles with similar pattern (for example where everything is the same 
apart from the number of affected rows). 

The Profile$ system table records the transaction profiles for the database.  

 

Field DataType Description 

Id Int The transaction profile identity 

Occurrences Int The number of times this profile has occurred 

Fails Int The number of failures recorded for this profile 

Schema Boolean Whether this transaction includes schema changes 

Further details for this profile are contained in the following tables. 

The Profile$ReadConstraint system table records the read constraint for a transaction profile. 

Field DataType Description 

Id Int The transaction profile identity 

Table String The current name of the table 

ColPos Int The defining position of a read column whose update is blocked 

ReadCol String The current name of a read column whose update is blocked 

The Profile$Record system links a transaction profile with a record profile. 

Field DataType Description 

Id Int The transaction profile identity 

Table String The current name of the table 

Rid Int The record profile identity 

Recs Int The number of records altered with this profile 

The Profile$RecordColumn table records the columns containing added or updated data in a record 
profile. 

Field DataType Description 

Id Int The transaction profile identity 

Table String The current name of the table 

Rid Int The record profile identity 

ColPos Int The defining position of an affected column 

RecCol String The current name of an affected column 

The Profile$Table table records the profile of delete operations for a specific table as well as providing 
information about update blocking. 

Field DataType Description 

Id Int The transaction profile identity 

Table String The current name of the table 

BlockAny Boolean This profile blocks on any concurrent update of the table 

Dels Int The number of deletions in a transaction 

Index Int The defining position of an index with specific records 

Pos Int The defining position of the table 

ReadRecs Int The number of specific records whose update is blocked 

Schema Boolean Whether the profile changes the table schema 

If BlockAny is true, Index and ReadRecs will be 0; and if there are Profile$ReadColumn entries 
blocking is limited to these columns. 

7. Pyrrho and Cloud computing 

By default a Pyrrho server uses local memory and local durable storage to provide access to a set of 
databases for which it acts as transaction master. 

Pyrrho servers can optionally be configured to operate as a cloud computing service, with servers 
operating at Storage, Master and DBMS levels. Full details of the configuration file are given in 
section 10. The principles adopted are that a DBMS can provide direct or indirect access to a number 
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of databases; each database must have a single transaction master, and cloud storage for a 
database can be replicated, but can be updated only by the transaction master. 

As a consequence, a Storage server needs to have a transaction Master or DBMS configured for 
each database that it stores. If a transaction master is configured for a database, then it can have a 
number of DBMS’s configured for direct access, and further DBMS’s can be added by the transaction 
master. These DBMS’s can be used for direct or indirect access to the database, and optionally a 
DBMS can maintain a local copy of the database enabling read access when the transaction master 
is unavailable.  

If the configuration file for the storage server specifies a DBMS for a database without specifying a 
transaction master, then the DBMS takes the role of transaction master for its own operations, and 
can also be used for indirect access. Thus a transaction master for a database may itself be a DBMS, 
in which case it can do query processing, SQL, SPARQL etc on behalf of clients (Level 4 in the 
Pyrrho protocol, see section 8.5). Otherwise, its role is to arbitrate and commit transactions sent to it 
by DBMS’s. Unlike a server playing the DBMS role, it needs to keep track only of authorised servers 
and user-defined data types for each database it masters. This saving in complexity makes means 
that a single transaction manager can easily handle traffic from multiple DBMSs. 

The concept of indirect access to a DBMS is discussed further in chapter 11 (remote transaction 
master). It allows implementation of large databases whose data is partitioned over several servers. 

8. Configuring servers and availability 

Pyrrho can be operated on laptops, PDAs and phones that have the .NET framework. By default all 
databases are held on the local machine or device. However, such a local server can be configured to 
access master copies of the data held on a remote Pyrrho server. This results in a form of cloud 
computing. Multi-database connections can include both local and remote data, which can be 
combined in query processing. Such combinations can be completely ad-hoc, so they are allowed to 
be specified in the connection string (they do not require server configuration). Servers can also be 
configured to work with remote databases, by using a configuration file. 

The synchronised storage mode can also be used if the database is small enough to fit comfortably in 
memory. If this is not desirable, with the Remote storage mode a local server can simply keep track of 
schema information for the remote (cloud) database(s) it is allowed to access, and search and 
manipulate their data using ordinary SQL. In addition, by using multi-database connections, a local 
server can efficiently integrate data from local and remote databases, for example by using functional 
dependency and constraint information. Query processing discovers minimal rowsets to obtain from 
the cloud database(s) for combination with rowsets from the local database(s). 

For example, a company agent could maintain a database of visits and potential sales on a PDA, and 
remotely access the corporate database to obtain customer and product information. An application 
on the PDA could combine the two sets of information in useful ways. 

If the remote database is inaccessible, a cached copy of a valid state of the database may still be 
available. Pyrrho allows such data to be readable, and a transaction can even be started. But the 
transaction cannot be committed without recourse to the transaction master, and will then fail if a 
transaction has modified any data accessed by the client since the time the copy was last validated. If 
the client does not seek to make changes, then it is as if the client’s work took place at an earlier time 
(the time the copy was made). This is relevant to the discussion of partial synchronisation in [4]: if 
messages are lost, however, Pyrrho will report that the transaction has failed. 

9. Transaction Rate and Benchmarking 

The TPCC benchmark [10] is cited in many of the papers referred to, and has been tried in a variety 
of configurations on the database system described above. The TPCC is a reasonable model of 
classic online transaction processing, although we outline below two major difficulties with this 
benchmark for cloud computing. 
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The above illustration highlights in yellow data that is retrieved from the server during the new_order 
transaction: the entries highlighted in white originate at the client. With a PC acting as query 
processor, a single client at 33 transactions per second uses 50 MB/s of network bandwidth, even 
though the transaction traffic is only 55KB/s written to permanent storage. For example, the amount of 
stock requested for each item is always calculated from the current stock level for that item, so 
multiple retrieval operations take place in each new order transaction. With multiple agents, the TPCC 
benchmark design quickly saturates the network. (Of course, no human operator could generate even 
one transaction per second.) 

Secondly, the new order is required to operate as a single transaction that updates a field called 
d_next_o_id which is held per district. This is incremented by the new_order transaction, so 
concurrent new_order transactions for the same district are very likely to conflict. At first sight, this 
per-district behaviour makes partitioning the warehouse by district look attractive. Unfortunately, this 
partitioning scheme does not work well because every new order updates the stock levels of a 
random set of warehouse items. To me this problems seems to impose a hard limit on the maximum 
transaction speed N: if a query processor takes 0.03 sec to prepare a transaction, then N/33 
transactions will have committed in the meantime, so with 10 districts there are about N/300 
conflicting transactions. To me this seems to suggest N<600 tps. 

Nevertheless it is interesting to explore the other ideas in this paper as they could apply to the TPCC 
benchmark. Imagine that the d_next_o_id problem is solved. The network loading from agent to query 
processor of 50MB/s suggests a reasonable level of 3 agents per query processor; that is, each query 
processor can manage 100 new-order transactions per second. 10 query processors could share a 
disk (or storage server). 20 such clusters could be managed by a single transaction master for a total 
transaction traffic of 120MB/s. The result of committing transactions would be that the database (log) 
file would grow at 90 MB/s (2000 new orders becomes 9MB for the PyrrhoDBMS).On a Windows 7 
PC, 500MB/s is the practical limit for the disk subsystem, so this volume would give the transaction 
master adequate time to replicate the new data onto the storage servers. Compared with the 
published record-breakers for TPCC these figures may seem modest. 

Some other test results have been more interesting. The VoltDB community claims that using a 
single-threaded server with a single transaction queue is more efficient than using multi-threading with 
many channels. However, in my experiments, a single-threaded simple server with 100 clients 
accessing the request socket can only manage 50 requests per second, while a multi-threaded server 
with 100 open connections can do 55000 requests per second. This experiment helped with the 
TPCC sketch described above. 
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10. Conclusions 

This paper has outlined a scalable approach to database provision that meets many of the 
requirements of cloud computing, while retaining SQL2008 compliance and fully ACID transactions. It 
is now one of a number of approaches that use optimistic concurrency control to solve many of the 
issues that are important for cloud computing while refusing to accept any departure from consistency 
or transaction integrity. All have come up with ways of maximising transaction efficiency and 
availability for the applications they consider subject to this overriding constraint. 

It is possible to imagine an environment in which all of these solutions would work together on top of a 
common storage model. This might be a fruitful field for further research. It is a pleasure to thank Tim 
Lessner for reading a draft of this paper. 
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