
Abstract
Data warehousing and on-line analytical processing (OLAP)
are essential elements of decision support, which has
increasingly become a focus of the database industry. Many
commercial products and services are now available, and all
of the principal database management system vendors now
have offerings in these areas. Decision support places some
rather different requirements on database technology
compared to  traditional on-line transaction processing
applications. This paper provides an overview of data
warehousing and OLAP technologies, with an emphasis on
their new requirements. We describe back end tools for
extracting, cleaning and loading data into a data warehouse;
multidimensional data models  typical of OLAP; front end
client tools for querying and data analysis; server extensions
for efficient query processing; and tools for metadata
management and for managing the warehouse. In addition to
surveying the state of the art, this paper also identifies some
promising research issues, some of which are related to
problems that the database research community has worked
on for years, but others are only just beginning to be
addressed. This overview is based on a tutorial that the
authors presented at the VLDB Conference, 1996.

1.  Introduction
Data warehousing is a collection of decision support
technologies, aimed at enabling the knowledge worker
(executive, manager, analyst) to make better and faster
decisions. The past three years have seen explosive growth,
both in the number of products and services offered, and in
the adoption of these technologies by industry. According to
the META Group, the data warehousing market, including
hardware, database software, and tools, is projected to grow
from $2 billion in 1995 to $8 billion in 1998. Data
warehousing technologies have been successfully deployed in
many industries: manufacturing (for order shipment and
customer support), retail (for user profiling and inventory
management), financial services (for claims analysis, risk
analysis, credit card analysis, and fraud detection),
transportation (for fleet management), telecommunications
(for call analysis and fraud detection), utilities (for power
usage analysis), and healthcare (for outcomes analysis). This
paper presents a roadmap of data warehousing technologies,
focusing on the special requirements that data warehouses
place on database management systems (DBMSs).

A data warehouse is a “subject-oriented, integrated, time-
varying, non-volatile collection of data that is used primarily
in organizational decision making.”1  Typically, the data
warehouse is maintained separately from the organization’s
operational databases. There are many reasons for doing this.
The data warehouse supports on-line analytical processing
(OLAP), the functional and performance requirements of
which are quite different from those of the on-line transaction
processing (OLTP) applications traditionally supported by the
operational databases.

OLTP applications typically automate clerical data processing
tasks such as order entry and banking transactions that are the
bread-and-butter day-to-day operations of an organization.
These tasks are structured and repetitive, and consist of short,
atomic, isolated transactions. The transactions require
detailed, up-to-date data, and read or update a few (tens of)
records accessed typically on their primary keys. Operational
databases tend to be hundreds of megabytes to gigabytes in
size. Consistency and recoverability of the database are
critical, and maximizing transaction throughput is the key
performance metric. Consequently, the database is designed
to reflect the operational semantics of known applications,
and, in particular, to minimize concurrency conflicts.

Data warehouses, in contrast, are targeted for decision
support. Historical, summarized and consolidated data is
more important than detailed, individual records. Since data
warehouses contain consolidated data, perhaps from several
operational databases,  over potentially long periods of time,
they tend to be orders of magnitude larger than operational
databases; enterprise data warehouses are projected to be
hundreds of gigabytes to terabytes in size. The workloads are
query intensive with mostly ad hoc, complex queries that can
access millions of records and perform a lot of scans, joins,
and aggregates. Query throughput and response times are
more important than transaction throughput.

To facilitate complex analyses and visualization, the data in a
warehouse is typically modeled multidimensionally. For
example, in a sales data warehouse, time of sale, sales district,
salesperson, and  product  might be some of the dimensions
of interest. Often, these dimensions are hierarchical; time of
sale may be organized as a day-month-quarter-year hierarchy,
product as a product-category-industry hierarchy. Typical
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OLAP operations include  rollup (increasing the level of
aggregation) and drill-down (decreasing the level of
aggregation or increasing detail) along one or more
dimension hierarchies, slice_and_dice (selection and
projection), and pivot (re-orienting the multidimensional view
of data).

Given that operational databases are finely tuned to support
known OLTP workloads, trying to execute complex OLAP
queries against the operational databases would result in
unacceptable performance. Furthermore, decision support
requires data that might be missing from the operational
databases; for instance, understanding trends or making
predictions requires historical data, whereas operational
databases store only current data. Decision support usually
requires consolidating data from many heterogeneous
sources: these might include external sources such as stock
market feeds, in addition to several operational databases.
The different sources might contain data of varying quality, or
use inconsistent representations, codes and formats, which
have to be reconciled. Finally, supporting the
multidimensional data models and operations typical of
OLAP requires special data organization, access methods,
and implementation methods, not generally provided by
commercial DBMSs targeted for OLTP. It is for all these
reasons that data warehouses are implemented separately
from operational databases.

Data warehouses might be implemented on standard or
extended relational DBMSs, called  Relational OLAP
(ROLAP) servers. These servers assume that data is stored in
relational databases, and they support extensions to SQL and
special access and implementation methods to efficiently
implement the multidimensional data model and operations.
In contrast, multidimensional OLAP (MOLAP) servers are
servers that directly store multidimensional data in special
data structures (e.g., arrays) and implement the OLAP
operations over these special data structures.

There is more to building and maintaining a data warehouse
than selecting an OLAP server and defining a schema and
some complex queries for the warehouse. Different
architectural alternatives exist. Many organizations want to
implement an integrated enterprise warehouse that collects
information about all subjects (e.g., customers, products,
sales, assets, personnel) spanning the whole organization.
However, building an enterprise warehouse is a long and
complex process, requiring extensive business modeling, and
may take many years to succeed. Some organizations are
settling for data marts instead, which are departmental
subsets focused on selected subjects (e.g., a marketing data
mart may include customer, product, and sales information).
These data marts enable faster roll out, since they do not
require enterprise-wide consensus, but they may lead to
complex integration problems in the long run, if a complete
business model is not developed.

In Section 2, we describe a typical data warehousing
architecture, and the process of designing and operating a
data warehouse. In Sections 3-7, we review relevant
technologies for loading and refreshing data in a data
warehouse, warehouse servers, front end tools, and
warehouse management tools. In each case, we point out
what is different from traditional database technology, and we
mention representative products. In this paper, we do not
intend to provide comprehensive descriptions of all products
in every category.  We encourage the interested reader to look
at recent issues of trade magazines such as Databased
Advisor, Database Programming and Design, Datamation,
and DBMS Magazine, and vendors’ Web sites for more
details of commercial products, white papers, and case
studies. The OLAP Council2  is a good source of  information
on standardization efforts across the industry, and a paper by
Codd, et al.3 defines twelve rules for OLAP products. Finally,
a good source of references on data warehousing and OLAP
is the Data Warehousing Information Center4.

Research in data warehousing is fairly recent, and has focused
primarily on query processing and view maintenance issues.
There still are many open research problems. We conclude in
Section 8 with a brief mention of these issues.

2.  Architecture and End-to-End Process
Figure 1 shows a typical data warehousing architecture.
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Figure 1. Data Warehousing Architecture

It includes tools for extracting data from multiple operational
databases and external sources; for cleaning, transforming
and integrating this data; for loading data into the data
warehouse; and for periodically refreshing the warehouse to
reflect updates at the sources and to purge data from the
warehouse, perhaps onto slower archival storage. In addition
to the main warehouse, there may be several departmental
data marts. Data in the warehouse and data marts is stored
and managed by one or more warehouse servers, which
present multidimensional views of data to a variety of  front
end tools: query tools, report writers, analysis tools, and data
mining tools. Finally, there is a repository for storing and



managing metadata, and tools for monitoring and
administering the warehousing system.

The warehouse may be distributed for load balancing,
scalability, and higher availability.  In such a distributed
architecture, the metadata repository is usually replicated with
each fragment of the warehouse, and the entire warehouse is
administered centrally. An alternative architecture,
implemented for expediency when it may be too expensive to
construct a single logically integrated enterprise warehouse, is
a federation of warehouses or data marts, each with its own
repository and decentralized administration.
Designing and rolling out a  data warehouse is a complex
process, consisting of the following activities5.

• Define the architecture, do capacity planning, and select
the storage servers, database and OLAP servers, and
tools.

• Integrate the servers, storage, and client tools.

• Design the warehouse schema and views.

• Define the physical warehouse organization, data
placement, partitioning, and access methods.

• Connect the sources using gateways, ODBC drivers, or
other wrappers.

• Design and implement scripts for data extraction,
cleaning, transformation, load, and refresh.

• Populate the repository with the schema and view
definitions, scripts, and other metadata.

• Design and implement end-user applications.

• Roll out the warehouse and applications.

 
3. Back End Tools and Utilities
Data warehousing systems use a variety of data extraction and
cleaning tools, and load and refresh utilities for populating
warehouses. Data extraction from “foreign” sources is usually
implemented via gateways and standard interfaces (such as
Information Builders EDA/SQL, ODBC, Oracle Open
Connect, Sybase Enterprise Connect, Informix Enterprise
Gateway).

Data Cleaning
Since a data warehouse is used for decision making, it is
important that the data in the warehouse be correct. However,
since large volumes of data from multiple sources are
involved, there is a high  probability of errors and anomalies
in the data.. Therefore, tools that help to detect data
anomalies and correct them can have a high payoff.  Some
examples where data cleaning becomes necessary are:
inconsistent field lengths, inconsistent descriptions,
inconsistent value assignments, missing entries and violation
of integrity constraints. Not surprisingly, optional fields in
data entry forms are significant sources of inconsistent data.

There are three related, but somewhat different, classes of
data cleaning tools. Data migration tools allow simple
transformation rules to be specified; e.g., “replace the string
gender by sex”. Warehouse Manager from Prism is an
example of a popular tool of this kind. Data scrubbing tools
use domain-specific knowledge (e.g., postal addresses) to do
the scrubbing of data. They often exploit parsing and fuzzy
matching techniques to accomplish cleaning from multiple
sources. Some tools make it possible to specify the “relative
cleanliness” of sources. Tools such as Integrity and Trillum
fall in this category. Data auditing tools make it possible to
discover rules and relationships (or to signal violation of
stated rules) by scanning data. Thus, such tools may be
considered variants of data mining tools. For example, such a
tool may discover a suspicious pattern (based on statistical
analysis) that a certain car dealer has never received any
complaints.

Load
After extracting, cleaning and transforming, data must be
loaded into the warehouse. Additional preprocessing may still
be required: checking integrity constraints; sorting;
summarization, aggregation and other computation to build
the derived tables stored in the warehouse; building indices
and other access paths; and partitioning to multiple target
storage areas. Typically, batch load utilities are used for this
purpose. In addition to populating the warehouse, a load
utility must allow the system administrator to monitor status,
to cancel, suspend and resume a load, and to restart after
failure with no loss of data integrity.

The load utilities for data warehouses have to deal with much
larger data volumes than for operational databases. There is
only a small time window (usually at night) when the
warehouse can be taken offline to refresh it. Sequential loads
can take a very long time, e.g., loading a terabyte of data can
take weeks and months! Hence, pipelined and partitioned
parallelism are typically exploited 6. Doing a full load has the
advantage that it can be treated as a long batch transaction
that builds up a new database.  While it is in progress, the
current database can still support queries; when the load
transaction commits, the current database is replaced with the
new one. Using periodic checkpoints ensures that if a failure
occurs during the load, the process can restart from the last
checkpoint.

However, even using parallelism, a full load may still take too
long. Most commercial utilities (e.g., RedBrick Table
Management Utility) use incremental loading during refresh
to reduce the volume of data that has to be incorporated into
the warehouse. Only the updated tuples are inserted.
However, the load process now is harder to manage. The
incremental load conflicts with ongoing queries, so it is
treated as a sequence of shorter transactions (which commit
periodically, e.g., after every 1000 records or every few
seconds), but now this sequence of transactions has to be



coordinated to ensure consistency  of derived data and indices
with the base data.

Refresh
Refreshing a warehouse consists in propagating updates on
source data to correspondingly update the base data and
derived data stored in the warehouse. There are two sets of
issues to consider: when to refresh, and how to refresh.
Usually, the warehouse is refreshed periodically (e.g., daily or
weekly). Only if some OLAP queries need current data (e.g.,
up to the minute stock quotes), is it necessary to propagate
every update. The refresh policy is set by the warehouse
administrator, depending on user needs and traffic, and may
be different for different sources.

Refresh techniques may also depend on the characteristics of
the source and the capabilities of the database servers.
Extracting an entire source file or database is usually too
expensive, but may be the only choice for legacy data
sources. Most contemporary database systems provide
replication servers that support incremental techniques for
propagating updates from a primary database to one or more
replicas. Such replication servers can be used to
incrementally refresh a warehouse when the sources change.
There are two basic replication techniques: data shipping and
transaction shipping.

In data shipping (e.g., used in the Oracle Replication Server,
Praxis OmniReplicator), a table in the warehouse is treated as
a remote snapshot of a table in the source database. After_row
triggers are used to update a snapshot log table whenever the
source table changes; and an automatic refresh schedule (or a
manual refresh procedure) is then set up to propagate the
updated data to the remote snapshot.

In transaction shipping (e.g., used in the Sybase Replication
Server and Microsoft SQL Server), the regular transaction log
is used, instead of  triggers and a special snapshot log table.
At the source site, the transaction log is sniffed to detect
updates on replicated tables, and those log records are
transferred to a replication server, which packages up the
corresponding transactions to update the replicas. Transaction
shipping has the advantage that it does not require triggers,
which can increase the workload on the operational source
databases. However, it cannot always be used easily across
DBMSs from different vendors, because there are no standard
APIs for accessing the transaction log.

Such replication servers have been used for refreshing data
warehouses. However, the refresh cycles have to be properly
chosen so that the volume of data does not overwhelm the
incremental load utility.

In addition to propagating changes to the base data in the
warehouse, the derived data also has to be updated
correspondingly. The problem of constructing logically

correct updates for incrementally updating derived data
(materialized views) has been the subject of much research 7 8
9 10. For data warehousing, the most significant classes of
derived data are summary tables,  single-table indices and
join indices.

4. Conceptual Model and Front End Tools

A popular conceptual model that influences the front-end
tools, database design, and the query engines for OLAP is the
multidimensional view of  data in the warehouse. In a
multidimensional data model, there is a set of numeric
measures that are the objects of analysis. Examples of such
measures are sales, budget, revenue, inventory, ROI (return
on investment). Each of the numeric measures depends on a
set of dimensions, which provide the context for the measure.
For example, the dimensions associated with a sale amount
can be the city, product name, and the date when the sale was
made. The dimensions together are assumed to uniquely
determine the measure. Thus, the multidimensional data
views a measure as a value in the multidimensional space of
dimensions. Each dimension is described by a set of
attributes. For example, the Product dimension may consist of
four attributes: the category and the  industry of the product,
year of its introduction, and the average profit margin.  For
example, the soda Surge belongs to the category beverage
and the food industry, was introduced in 1996, and may have
an average profit margin of 80%. The attributes of a
dimension may be related via a hierarchy of relationships. In
the above example, the product name is related to its category
and the industry attribute through such a hierarchical
relationship.
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Figure 2. Multidimensional data

Another distinctive feature of the conceptual model for
OLAP is its stress on aggregation of measures by one or
more dimensions as one of the key operations; e.g.,
computing and ranking the total sales by each county (or by
each year).  Other popular operations include comparing two
measures (e.g., sales and budget) aggregated by the same
dimensions. Time is a dimension that is of particular
significance to decision support (e.g., trend analysis). Often,
it is desirable to have built-in knowledge of calendars and
other aspects of the time dimension.



Front End Tools
The multidimensional data model grew out of the view of
business data popularized by PC spreadsheet programs that
were extensively used by business analysts. The spreadsheet
is still the most compelling front-end application for OLAP.
The challenge in supporting a query environment for OLAP
can be crudely summarized as that of supporting spreadsheet
operations efficiently over large multi-gigabyte databases.
Indeed,  the Essbase product of Arbor Corporation uses
Microsoft Excel as the front-end tool for its multidimensional
engine.

We shall briefly discuss some of the popular operations that
are supported by the multidimensional spreadsheet
applications. One such operation is pivoting. Consider the
multidimensional schema of Figure 2 represented in a
spreadsheet where each row corresponds to a sale . Let there
be one column for each dimension and an extra column that
represents the amount of sale. The simplest view of pivoting
is that it selects two dimensions that are used to aggregate a
measure, e.g., sales in the above example. The aggregated
values are often displayed in a grid where each value in the
(x,y) coordinate corresponds to the aggregated value of the
measure when the first dimension has the value x and the
second dimension has the value y.  Thus, in our example, if
the selected dimensions are city and year, then the x-axis may
represent all values of city and the y-axis may represent the
years. The point (x,y) will represent the aggregated sales for
city x in the year y.  Thus, what were values in the original
spreadsheets have now become row and column headers in
the pivoted spreadsheet.

Other operators related to pivoting are  rollup or drill-down.
Rollup corresponds to taking the current data object and
doing a further group-by on one of the dimensions. Thus, it is
possible to roll-up the sales data, perhaps already aggregated
on city, additionally by product. The drill-down operation is
the converse of rollup. Slice_and_dice corresponds to
reducing the dimensionality of the data, i.e., taking a
projection of the data on a subset of dimensions for selected
values of the other dimensions. For example, we can
slice_and_dice sales data for a specific product to create a
table that consists of the dimensions city and the day of sale.
The other popular operators include ranking (sorting),
selections and defining computed attributes.

Although the multidimensional spreadsheet has attracted a lot
of interest since it empowers the end user to analyze business
data, this has not replaced traditional analysis by means of a
managed query environment. These environments use stored
procedures and predefined complex queries to provide
packaged analysis tools. Such tools often make it possible for
the end-user to query in terms of domain-specific business

data. These applications often use raw data access tools and
optimize the access patterns depending on the back end
database server. In addition, there are query environments
(e.g., Microsoft Access) that help build ad hoc SQL queries
by “pointing-and-clicking”.  Finally, there are a variety of
data mining tools that are often used as front end tools to data
warehouses.

5. Database Design Methodology

The multidimensional data model described above is
implemented directly by MOLAP servers. We will describe
these briefly in the next section. However, when a relational
ROLAP server is used, the multidimensional model and its
operations have to be mapped into relations and SQL queries.
In this section, we describe the design of relational database
schemas  that reflect the multidimensional views of data.

Entity Relationship diagrams and normalization techniques
are popularly used for database design in OLTP
environments. However, the database designs recommended
by ER diagrams are inappropriate for decision support
systems where efficiency in querying and in loading data
(including incremental loads) are important.
Most data warehouses use a star schema to represent the
multidimensional data model. The database consists of a
single fact table and a single table for each dimension. Each
tuple in the fact table consists of a pointer (foreign key - often
uses a generated key for efficiency) to each of the dimensions
that provide its multidimensional coordinates, and stores the
numeric measures for those coordinates. Each dimension
table consists of columns that correspond to attributes of the
dimension. Figure 3 shows an example of a star schema.
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Figure 3. A Star Schema.

Star schemas do not explicitly provide support for attribute
hierarchies. Snowflake schemas provide a refinement of star



schemas where the dimensional hierarchy is explicitly
represented by normalizing the dimension tables, as shown in
Figure 4. This leads to advantages in maintaining the
dimension tables. However, the denormalized structure of the
dimensional tables in star schemas may be more appropriate
for browsing the dimensions.

Fact constellations are examples of more complex structures
in which multiple fact tables share dimensional tables. For
example, projected expense and the actual expense may form
a fact constellation since they share many dimensions.
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Figure 4. A Snowflake Schema.

In addition to the fact and dimension tables, data warehouses
store selected summary tables containing pre-aggregated data.
In the simplest cases, the pre-aggregated data corresponds to
aggregating the fact table on one or more selected
dimensions. Such pre-aggregated summary data can be
represented in the database in at least two ways.  Let us
consider the example of a summary table that has total sales
by product by year in the context of the star schema of Figure
3. We can represent such a summary table by a separate fact
table which shares the dimension Product and also a separate
shrunken dimension table for time, which consists of only the
attributes of the dimension that make sense for the summary
table (i.e., year). Alternatively, we can represent the summary
table by encoding the aggregated tuples in the same fact table
and the same dimension tables without adding new tables.
This may be accomplished by adding a new level field to each
dimension and using nulls: We can encode a day, a month or
a year in the Date dimension table as follows:  (id0, 0, 22, 01,
1960) represents a record for Jan 22, 1960,  (id1, 1, NULL,
01, 1960) represents the month Jan 1960 and (id2, 2,  NULL,
NULL, 1960) represents the year 1960.  The second attribute
represents the new attribute level: 0 for days, 1 for months, 2
for years. In the fact table, a record containing the foreign key
id2 represents the aggregated sales for a Product in the year
1960. The latter method, while reducing the number of tables,
is often a source of operational errors since the level field
needs be carefully interpreted.

6.  Warehouse Servers

Data warehouses may contain large volumes of data.  To
answer queries efficiently, therefore, requires highly efficient
access methods and query processing techniques. Several
issues arise. First, data warehouses use redundant structures
such as indices and materialized views. Choosing which
indices to build and which views to materialize is an
important physical design problem. The next challenge is to
effectively use the existing indices and materialized views to
answer queries. Optimization of complex queries is another
important problem. Also, while for data-selective queries,
efficient index scans may be very effective, data-intensive
queries need the use of sequential scans. Thus, improving the
efficiency of scans is important. Finally, parallelism needs to
be exploited to reduce query response times.  In this short
paper, it is not possible to elaborate on each of these issues.
Therefore, we will only briefly touch upon the highlights.

Index Structures and their Usage
A number of query processing techniques that exploit indices
are useful. For instance,  the selectivities of multiple
conditions can be exploited through index intersection.  Other
useful index operations are union of indexes. These index
operations can be used to significantly reduce and in many
cases eliminate the need to access the base tables.

Warehouse servers can use bit map indices, which support
efficient index operations (e.g., union, intersection).  Consider
a leaf page in an index structure corresponding to a domain
value d.  Such a leaf page traditionally contains a list of the
record ids (RIDs) of records that contain the value d.
However, bit map indices use an alternative representation of
the above RID list as a bit vector that has one bit for each
record, which is set when the domain value for that record is
d. In a sense, the bit map index is not a new index structure,
but simply an alternative representation of the RID list. The
popularity of the bit map index is due to the fact that the bit
vector representation of the RID lists can speed up index
intersection, union, join, and aggregation11.  For example, if
we have a query of the form column1 = d  & column2 = d’,
then we can identify the qualifying records by taking the
AND of the two bit vectors. While such representations can
be very useful for low cardinality domains (e.g., gender), they
can also be effective for higher cardinality domains through
compression of bitmaps (e.g., run length encoding). Bitmap
indices were originally used in Model 204, but many products
support them today (e.g., Sybase IQ). An interesting question
is to decide on which attributes to index. In general, this is
really a question that must be answered by the physical
database design process.

In addition to indices on single tables, the specialized nature
of star schemas makes join indices especially attractive for
decision support. While traditionally indices map the value in
a column to a list of rows with that value, a join index



maintains the relationships between a foreign key with its
matching primary keys. In the context of a star schema, a join
index can relate the values of one or more attributes of a
dimension table to matching rows in the fact table. For
example, consider the schema of Figure 3. There can be a
join index on City that maintains, for each city, a list of RIDs
of the tuples in the fact table that correspond to sales in that
city. Thus a join index essentially precomputes a binary join.
Multikey join indices can represent precomputed n-way joins.
For example, over the Sales database it is possible to
construct a multidimensional  join index from (Cityname,
Productname) to the fact table. Thus, the index entry for
(Seattle, jacket) points to RIDs of those tuples in the Sales
table that have the above combination. Using such a
multidimensional  join index can sometimes provide savings
over taking the intersection of separate indices on Cityname
and Productname. Join indices can be used with bitmap
representations for the RID lists for efficient join
processing12.

Finally, decision support databases contain a significant
amount of descriptive text and so indices to support  text
search are useful as well.

Materialized Views and their Usage
Many queries over data warehouses require summary data,
and, therefore, use aggregates. Hence, in addition to indices,
materializing summary data can help to accelerate many
common queries. For example, in an investment environment,
a large majority of the queries may be based on the
performance of the most recent quarter and the current fiscal
year. Having summary data on these parameters can
significantly speed up query processing.

The challenges in exploiting materialized views are not unlike
those in using indices: (a) identify the views to materialize,
(b) exploit the materialized views to answer queries, and (c)
efficiently update the materialized views during load and
refresh.  The currently adopted industrial solutions to these
problems consider materializing views that have a relatively
simple structure. Such views consist of joins of the fact table
with a subset of dimension tables (possibly after some
selections on those dimensions), with the aggregation of one
or more measures  grouped by a set of attributes from the
dimension tables. The structure of these views is a little more
complex  when the underlying schema is a snowflake.

Despite the restricted form, there is still a wide choice of
views to materialize. The selection of views to materialize
must take into account workload characteristics, the costs for
incremental update, and upper bounds on storage
requirements. Under simplifying assumptions, a greedy
algorithm was shown to have good performance13. A related
problem that underlies optimization as well as choice of

materialized views is that of estimating the effect of
aggregation on the cardinality of the relations.

A simple, but  extremely useful, strategy for using a
materialized view is to use selection on the materialized view,
or rollup on the materialized view by grouping and
aggregating on additional columns. For example, assume that
a materialized view contains the total sales by quarter for
each product. This materialized view can be used to answer a
query that requests the total sales of Levi’s jeans for the year
by first applying the selection and then rolling up from
quarters to years. It should be emphasized that the ability to
do roll-up from a partially aggregated result, relies on
algebraic properties of the aggregating functions (e.g., Sum
can be rolled up, but some other statistical function may not
be).

In general, there may be several candidate materialized views
that can be used to answer a query.  If  a view V has the same
set of dimensions as Q, if the selection clause in Q implies the
selection clause in V, and if the group-by columns in V are a
subset of the group-by columns in Q, then view V can act as a
generator of Q. Given a set of materialized views M, a query
Q, we can define a set of  minimal generators M’ for Q (i.e.,
smallest set of  generators such that all other generators
generate some member of M’). There can be multiple
minimal generators for a query. For example,  given a query
that asks for total sales of clothing in Washington State, the
following two views are both generators: (a) total sales by
each state for each product (b) total sales by each city for
each category. The notion of minimal generators can be used
by the optimizer to narrow the search for the appropriate
materialized view to use. On the commercial side, HP
Intelligent Warehouse pioneered the use of the minimal
generators to answer queries. While we have defined the
notion of a generator in a restricted way,  the general problem
of optimizing queries in the presence of  multiple
materialized views is more complex. In the special case of
Select-Project-Join queries, there has been some work in this
area.14 15 16

Transformation of  Complex SQL Queries
The problem of finding efficient techniques for processing
complex queries has been of keen interest in query
optimization. In a way, decision support systems provide a
testing ground for some of the ideas that have been studied
before. We will only summarize some of the key
contributions.

There has been substantial work on “unnesting” complex
SQL queries containing nested subqueries by translating them
into single block SQL queries when certain syntactic
restrictions are satisfied17 18 19 20. Another direction that has
been pursued in optimizing nested subqueries is reducing the
number of invocations and batching invocation of inner



subqueries by semi-join like techniques21 22. Likewise, the
problem of flattening queries containing views has been a
topic of interest. The case where participating views are SPJ
queries is well understood. The problem is more complex
when one or more of the views contain aggregation23.
Naturally, this problem is closely related to the problem of
commuting group-by and join operators. However,
commuting group-by and join is applicable in the context of
single block SQL queries as well.24 25 26 An overview of the
field appears in  a recent paper27.

Parallel Processing
Parallelism plays a significant role in processing massive
databases. Teradata pioneered some of the key technology.
All major vendors of database management systems now
offer data partitioning and parallel query processing
technology. The article by Dewitt and Gray provides an
overview of this area28 . One interesting technique relevant to
the read-only environment of decision support systems is that
of piggybacking scans requested by multiple queries (used in
Redbrick). Piggybacking scan reduces the total work as well
as response time by overlapping scans of  multiple concurrent
requests.

Server Architectures for Query Processing
Traditional relational servers were not geared towards the
intelligent use of indices and other requirements for
supporting multidimensional views of data. However, all
relational DBMS vendors have now moved rapidly to support
these additional requirements. In addition to the traditional
relational servers, there are three other categories of  servers
that were developed specifically for decision support.

• Specialized SQL Servers:  Redbrick is an example of this
class of servers. The objective here is to provide
advanced query language and query processing support
for SQL queries over star and snowflake schemas  in
read-only environments.

• ROLAP Servers: These are intermediate servers that sit
between a relational back end server (where the data in
the warehouse is stored) and client front end tools.
Microstrategy is an example of such servers. They
extend traditional relational servers with specialized
middleware to efficiently support multidimensional
OLAP queries, and they typically optimize for specific
back end relational servers. They identify the views that
are to be materialized,  rephrase given user queries in
terms of the appropriate materialized views, and generate
multi-statement SQL for the back end server. They also
provide additional services such as scheduling of queries
and resource assignment (e.g., to prevent runaway
queries).  There has also been a trend to tune the ROLAP
servers for domain specific ROLAP tools. The main
strength of ROLAP servers is that they exploit the
scalability and the transactional features of relational

systems. However,  intrinsic mismatches between OLAP-
style querying and SQL (e.g., lack of sequential
processing, column aggregation) can cause performance
bottlenecks for OLAP servers.

• MOLAP Servers:  These servers directly support the
multidimensional view of data through a
multidimensional storage engine. This makes it possible
to implement front-end multidimensional queries on the
storage layer through direct mapping. An example of
such a server is Essbase (Arbor). Such an approach has
the advantage of excellent indexing properties, but
provides poor storage utilization, especially when the
data set is sparse. Many MOLAP servers adopt a 2-level
storage representation to adapt to sparse data sets and
use compression extensively. In the two-level storage
representation, a set of one or two dimensional subarrays
that are likely to be dense are identified, through the use
of design tools or by user input,  and are represented in
the array format. Then, the traditional indexing structure
is used to index onto these “smaller” arrays. Many of the
techniques that were devised for statistical databases
appear to be relevant for MOLAP servers.

 SQL Extensions
Several extensions to SQL that facilitate the expression and
processing of OLAP queries have been proposed or
implemented in extended relational servers. Some of these
extensions are described below.

• Extended family of aggregate functions: These include
support for rank and percentile (e.g., all products in the
top 10 percentile or the top 10 products by total Sale) as
well as support for a variety of functions used in
financial analysis (mean, mode, median).

• Reporting Features: The reports produced for business
analysis often requires aggregate features evaluated on a
time window, e.g.,  moving average. In addition, it is
important to be able to provide breakpoints and running
totals. Redbrick’s SQL extensions provide such
primitives.

• Multiple Group-By:  Front end tools such as
multidimensional spreadsheets require grouping by
different sets of attributes.  This can be simulated by a set
of SQL statements that require scanning the same data
set multiple times, but this can be inefficient. Recently,
two new operators, Rollup and Cube, have been
proposed to augment SQL to address this problem29.
Thus, Rollup of the list of attributes (Product, Year, City )
over a data set results in answer sets with the following
applications of group by: (a) group by (Product, Year,
City) (b) group by (Product, Year), and (c) group by
Product. On the other hand, given a list of k columns, the
Cube operator provides a group-by  for each of the 2k

combinations of  columns. Such multiple group-by
operations  can be executed efficiently by recognizing



commonalties among them30.  Microsoft SQL Server
supports Cube and Rollup.

• Comparisons:  An article by Ralph Kimball and Kevin
Strehlo provides an excellent overview of the
deficiencies of SQL in being able to do comparisons that
are common in the business world, e.g., compare the
difference between the total projected sale and total
actual sale by each quarter, where projected sale and
actual sale are columns of a table31. A straightforward
execution of such queries may require multiple
sequential scans. The article provides some alternatives
to better support comparisons.  A recent research paper
also addresses the question of how to do comparisons
among aggregated values by extending SQL32.

7. Metadata and Warehouse Management

Since a data warehouse reflects the business model of an
enterprise, an essential element of a warehousing architecture
is metadata management. Many different kinds of metadata
have to be managed. Administrative metadata includes all of
the information necessary for setting up and using a
warehouse: descriptions of the source databases, back-end
and front-end tools; definitions of the warehouse schema,
derived data, dimensions and hierarchies, predefined queries
and reports; data mart locations and contents; physical
organization such as data partitions; data extraction, cleaning,
and transformation rules; data refresh and purging policies;
and user profiles, user authorization and access control
policies. Business metadata includes business terms and
definitions, ownership of the data, and charging policies.
Operational metadata includes information that is collected
during the operation of the warehouse: the lineage of
migrated and transformed data; the currency of data in the
warehouse  (active, archived or purged); and monitoring
information such as usage statistics, error reports, and audit
trails.

Often, a metadata repository is used to store and manage all
the metadata associated with the warehouse. The repository
enables the sharing of metadata among tools and processes
for designing, setting up, using, operating, and administering
a warehouse. Commercial examples include Platinum
Repository and Prism Directory Manager.

Creating and managing a warehousing system is hard. Many
different classes of tools are available to facilitate different
aspects of the process described in Section 2. Development
tools are used to design and edit schemas, views, scripts,
rules, queries, and reports. Planning and analysis tools are
used for what-if scenarios such as understanding the impact
of schema changes or refresh rates, and for doing capacity
planning.  Warehouse management tools (e.g., HP Intelligent
Warehouse Advisor, IBM Data Hub, Prism Warehouse
Manager) are used for monitoring a warehouse, reporting

statistics and making suggestions to the administrator: usage
of partitions and summary tables,  query execution times,
types and frequencies of drill downs or rollups, which users
or groups request which data, peak and average workloads
over time, exception reporting, detecting runaway queries,
and other quality of service metrics. System and network
management tools (e.g., HP OpenView, IBM NetView,
Tivoli) are used to measure traffic between clients and
servers, between warehouse servers and operational
databases, and so on. Finally, only recently have workflow
management  tools been considered for managing the extract-
scrub-transform-load-refresh process. The steps of the
process can invoke appropriate scripts stored in the
repository, and can be launched periodically, on demand, or
when specified events occur. The workflow engine ensures
successful completion of the process, persistently records the
success or failure of each step, and provides failure recovery
with partial roll back , retry, or roll forward.

8. Research Issues

We have described the substantial technical challenges in
developing and deploying decision support systems. While
many commercial products and services exist, there are still
several interesting avenues for research. We will only touch
on a few of these here.

Data cleaning is a problem that is reminiscent of
heterogeneous data integration, a problem that has been
studied for many years. But here the emphasis is on data
inconsistencies instead of schema inconsistencies. Data
cleaning, as we indicated, is also closely related to data
mining,  with the objective of suggesting possible
inconsistencies.

The problem of physical design of data warehouses should
rekindle interest in the well-known problems of index
selection, data partitioning and the selection of materialized
views. However, while revisiting these problems, it is
important to recognize the special role played by aggregation.
Decision support systems already provide the field of query
optimization with increasing challenges in the traditional
questions of selectivity estimation and cost-based algorithms
that can exploit transformations without exploding the search
space (there are plenty of transformations, but few reliable
cost estimation techniques and few smart cost-based
algorithms/search strategies to exploit them). Partitioning the
functionality of the query engine between the middleware
(e.g., ROLAP layer) and the back end server is also an
interesting problem.

The management of  data warehouses also presents new
challenges. Detecting runaway queries, and managing and
scheduling resources are problems that are important but have
not been well solved. Some work has been done on the



logical correctness of  incrementally updating materialized
views, but the performance, scalability,  and recoverability
properties of these techniques have not been investigated. In
particular, failure and checkpointing issues in load and refresh
in the presence of many indices and materialized views needs
further research. The adaptation and use of workflow
technology might help, but this needs further investigation.

Some of these areas are being pursued by the research
community33 34, but others have received only cursory
attention, particularly in relationship to data warehousing.
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